

Maryland Department of Agriculture

Weed Risk Assessment for Ligustrum obtsifolium Siebold and Zucc.(1846) (Oleaceae) - Border privet

April 13, 2015
Version 1

Top: Flowers and fruits of Ligustrum obtusifolium (Zinovjev 2015); Bottom left: herbarium specimen (Thompson 1971); Bottom right: ornamental shrub: (King 2015).

Agency Contact:

Office of Plant Industries and Pest Management
Maryland Department of Agriculture 50 Harry S. Truman Parkway
Annapolis, Maryland 21401
Telephone: 410-841-5870

Introduction The Maryland Department of Agriculture regulates terrestrial ornamental invasive plants under the authority of Md. AGRICULTURE Code Ann. § 9.5101 et seq. Invasive Plant Prevention and Control. An invasive plant is defined as a terrestrial plant species that a) did not evolve in the State, and b) if introduced within the State, will cause or is likely to cause, as determined by the Secretary: economic, ecological, environmental harm or harm to human health.

Maryland's Invasive Plant Advisory Committee (IPAC) was established by legislative mandate in October 2011. The IPAC's primary responsibility is to advise the Secretary of Agriculture on regulating the sale of invasive plants, and on preventing them from entering Maryland or from spreading further in the state. IPAC evaluates the risk potential of plants already present in Maryland, newly detected in the Maryland or the United States, those proposed for import, and those emerging as weeds elsewhere in the world.

IPAC evaluates the potential invasiveness of plants using the weed risk assessment (WRA) process developed by the Plant Protection and Quarantine (PPQ) Program of the US Department of Agriculture's Animal and Plant Health Inspection Service (Koop et al. 2012). PPQ's risk model uses information about a species' biological traits and behavior to evaluate its risk potential (Koop et al. 2012).

Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States, or for any specific region in the United States. In the PPQ process, the geographic potential of the species is evaluated separately so that risk managers can make decisions appropriate for their regions. With respect to Maryland's evaluation process, we use PPQ's Geographic Information System overlays of climate to evaluate the potential for a plant to establish and grow in Maryland. The PPQ weed risk assessment also uses a stochastic simulation to evaluate how the uncertainty associated with the assessments affects the model's predictions. Detailed information on the PPQ WRA process is available in the document, Guidelines for the USDA-APHIS-PPQ Weed Risk Assessment Process (APHIS PPQ 2015), which is available upon request.

IPAC uses a second tool, the Maryland Filter, to assign plant species that score as highly invasive either Tier 1 or Tier 2 status. Maryland regulations define Tier 1 plants as "invasive plant species that cause or are likely to cause severe harm within the State" and Tier 2 plants as "invasive plant species that cause or are likely to cause substantial negative impact within the State." The Maryland Filter considers the actual and potential distribution of the species in Maryland, its threat to threatened and endangered ecosystems and species in the state, the difficulty of control of the species, and whether added propagule pressure would be likely to increase its persistence and spread significantly. IPAC then recommends regulations to reduce the risk of the Tiered invasive plants in Maryland.

Ligustrum obtusifolium Siebold and Zucc. - Border privet
Species Family: Oleaceae
Information Synonyms (The Plant List 2010; NGRP 2014): The genus, Ligustrum, is complicated and the species are often misidentified. L. obtusifolium may be understood as an inter-specific complex that includes L. sinense and L. vulgare, among others. The synonymy of L. obtusifolium itself can be confusing if care is not taken to consider the classifications completely. See Appendix C for detailed list of synonyms.

Ligustrum amurense Carrière
Ligustrum ibota Siebold
Ligustrum ibota var. regelianum Rehder Ligustrum Siebold and Zucc.
Ligustrum subsp. microphyllum (Nakai) P. S. Green
Ligustrum ibota f. microphyllum Nakai
Ligustrum subsp. obtusifolium
Ligustrum var. regelianum Rehder
Ligustrum subsp. suave (Kitag.) Kitag.
Ligustrum regelianum Koehne

Common names: Amur privet; blunt-leaved privet; border privet; Ibota privet; Japanese deciduous privet; obtuse-leaved privet; regal privet (NGRP 2014)
Botanical description: Border privet is a deciduous shrub that can reach 10-12 feet tall and spread to 15 feet wide. L. obtusifolium readily establishes dense thickets in old fields, forest gaps, and disturbed urban and suburban forest remnants, and stream valleys, old fields, forest gaps, and disturbed urban and suburban forest remnants (Yatskievych and and Raveill 2001; Flory and Clay 2006; Herron et al. 2007; Martine et al. 2008; Reay and Moore 2009; Thompson and Green 2010; Boyce 2010; Maddox et al. 2010; Rhoads and Block 2011; Shannon, Flory, and Reynolds 2012). Complete botanical descriptions may be found at (Siebold and Zuccarini, 1846; eFloras.org 2006).
Initiation: Ligustrum is listed on the MD DNR Do Not Plant List. The Maryland Invasive Plant Advisory Committee (IPAC) requested an assessment of this species in the summer of 2014.
Foreign distribution: L. obtusifolium is indigenous to provinces of eastern China and to Japan (Editorial Committee of the Flora of China 2006; NGRP 2014). It has been introduced to numerous countries in Europe where it is found in managed gardens, arboreta, and landscapes in Europe (Hatch 2015).
U.S. distribution and status: In the United States L. obtusifolium is found in the United States from New England (except for Maine) to North Carolina and west through the Midwest to parts of the Mississippi River; it is also found in Washington State (USDA-NRCS 2012).

WRA area 1 : Entire United States, including territories.
Ligustrum obtusifolium Siebold and Zucc. - Privet Family: Oleraceae

Summary Statement

The PPQ weed risk assessment for Ligustrum produced a result of High Risk after secondary screening. L. obtusifolium readily establishes dense thickets leading to a decline in biodiversity (Yatskievych and Raveill 2001; Flory and Clay 2006; Herron et al. 2007; Martine et al. 2008; Reay and Moore 2009; Thompson and Green 2010; Boyce 2010; Maddox et al. 2010; Rhoads and Block 2011; Shannon, Flory, and Reynolds 2012). In the Maryland Filter analysis, the species received a Tier II ranking because it is already widespread in Maryland and is not currently documented to threaten endangered species or ecosystems in the State. The species has been established for over 20 years in Maryland.

1. Ligustrum obtusifolium analysis

Establishment/Spread Ligustrum obtusifolium has already demonstrated its ability to establish and Potential spread in the United States (Yatskievych and Raveill 2001; Flory and Clay 2006; Herron et al. 2007; Martine et al. 2008; Reay and Moore 2009; Thompson and Green 2010; Boyce 2010; Maddox et al. 2010; Rhoads and Block 2011; Shannon, Flory, and Reynolds 2012). It spreads mainly by seed but also can readily resprout from roots and cut stems, which makes it capable of invading natural areas such as floodplain forests and woodlands (Prada and Arizpe 2008; Rhoads and Block 2011). L. obtusifolium forms dense thickets, preventing competition according to Rhoads and Block (2011), thus enabling establishment of new stands. We had a higher amount of uncertainty associated with this risk element, primarily because we were unable to answer four questions. Risk score $=10 \quad$ Uncertainty index $=0.22$

Impact Potential L. obtusifolioum "can form dense thickets and could have impacts on native biodiversity in a number of locales" (Maybury 2014). L. obtusifolium negatively impacts plant communities according to Flory and Clay (2009, 2006). L. obtusifolium does not impact infrastructure. We found no evidence that it affects production systems. We had average uncertainty for this risk element. Risk score $=2.0 \quad$ Uncertainty index $=0.17$

Geographic Potential Based on three climatic variables, we estimate that about 58 percent of the United States is suitable for the establishment of Ligustrum obtusifolium (Fig. 1). This predicted distribution is based on the species' known distribution

[^0]elsewhere in the world and includes point-referenced localities and areas of occurrence. The map for L. obtusifolium represents the joint distribution of Plant Hardiness Zones 3-11, areas with 10-100+ inches of annual precipitation, and the Köppen-Geiger climate classes Mediterranean, Humid subtropical, Marine west coast, Humid continental warm summers, and Humid continental cool summers.

The area of the United States shown to be climatically suitable (Fig. 1) is likely overestimated since our analysis considered only three climatic variables. Other environmental variables, such as soil and habitat type, may further limit the areas in which this species in likely to establish.

Entry Potential We did not assess the entry potential of Ligustrum obtusifolium because it has been present in the United States since the mid-19th century (Maddox, Byrd, and Serviss 2010).

Figure 1. Predicted distribution of Ligustrum obtusifolium in the United States. Map insets for Alaska, Hawaii and Puerto Rico are not to scale.

2. Results

Model Probabilities: $\quad \mathrm{P}($ Major Invader $)=36.0 \%$
$\mathrm{P}($ Minor Invader $)=58.9 \%$
$\mathrm{P}($ Non-Invader $)=5.1 \%$
Risk Result = Evaluate Further
Secondary Screening = Major Invader

Figure 2. Ligustrum obtusifolium risk score (black box) relative to the risk scores of species used to develop and validate the PPQ WRA model (other symbols). See Appendix A for the complete assessment.

Figure 3. Monte Carlo simulation results $(\mathrm{N}=5,000)$ for uncertainty around the risk score for Ligustrum obtusifolium. The blue "+" symbol represents the medians of the simulated outcomes. The smallest box contains 50 percent of the outcomes, the second 95 percent, and the largest 99 percent.

3. Discussion

The result of the weed risk assessment for Ligustrum obtusifolium was High Risk after secondary screening (Fig. 2). Overall, this species' profile is that of a minor-invader. The secondary screening tool classified it as high risk because it has demonstrated an ability to establish and spread elsewhere. We note that, had the species scored positively for one more question under establishment/spread potential or impact potential, the analysis would have resulted in a conclusion of High Risk without secondary screening. Because of its long established history in Maryland and the difficulty of control, it is assessed as a Tier 2 species in Maryland.

4. Literature Cited

Alien Invasive Landscape Plants in Virginia. 2014. Accessed online:
http://www.virginia.edu/blandy/blandy_web/arboretum/virginia_invasiv e_plants.pdf.
Batcher, M. S. 2000. Element stewardship abstracts Ligustrum spp. - Privet.
BISON (U.S. Geological Survey). 2014. . Accessed online: http://bison.usgs.ornl.gov/.
Blume, C. L. von. 1850. Museum Botanicum Lugduno-Batavum (Mus. Bot.). Museum Botanicum Lugduno-Batavum (Mus. Bot.).
Boyce, R. L. 2010. Invasive shrubs in Kentucky. Northeastern Naturalist

17:1-32. Eagle Hill Institute.
Brand, M. (Ed.). 2001a. Ligustrum obtusifolium. Accessed online: http://www.hort.uconn.edu/plants/1/ligobt/ligobt1.html.
Brand, M. (Ed.). 2001b. UConn Plant Database. Accessed online: http://www.hort.uconn.edu/plants/index.html.
Carrière, É. A. 1861. Ligustrum amurense. Revue Horticole 33:352-353, f. 85.

Clements, A., M. David, D. Lee, and J. Krebs (Eds.). 2012. Privet (Ligustrum obtusifolium, L. vulgare, L. ovalifolium, L. sinense, and L. amurense). Accessed online:
http://www.entm.purdue.edu/IISC/pdf/plants/Ligustrum_spp.pdf.
Dave's Garden (Ed.). 2014. PlantFiles: Border privet Ligustrum obtusifolium. Accessed online: http://davesgarden.com/guides/pf/go/78039/\#b.
Dirr, M. 2011. Dirr's Encyclopedia of Trees and Shrubs. Timber Press.
Douce, G. K., D. J. Moorhead, C. T. Bargeron, and R. C. Reardon. 2005. Invasive.org: a web-based image archive and database system focused on north american exotic and invasive species. in K. W. Gottschalk, editor. Proceedings, XV U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species 2004. U.S. Department of Agriculture, Forest Service, Northeastern Research Station.
EDDMapS. 2015. Early Detection and Distribution Mapping System. Center for Invasive Species and Ecosystem Health. University of Georgia. Accessed online March 22, 2015: http://www.eddmaps.org/.
Editorial Committee of the Flora of China. 2006. Flora of China. Cambridge, USA. Accessed online: http://www.efloras.org/volume_page.aspx? volume_id=2022\&flora_id=2

Ehrenfeld, J. G. 2008. Exotic invasive species in urban wetlands: environmental correlates and implications for wetland management. Journal of Applied Ecology 45:1160-1169. doi: 10.1111/j.13652664.2008.01476.x.

Erdle, S. Y., and K. E. Heffernan. 2005. Management plan for Catlett Islands: Chesapeake Bay National Estuarine Research Reserve - Virginia.
Faxon, C. E. 1903. Trees and shrubs: illustrations of new or little known ligneous plants. (C. S. Sargent, Ed.). Houghton, Mifflin.
Felt, E. P. (Ed.). 1916. Journal of Economic Entomology. Entomological Society of America.
Flory, S. L., and K. Clay. 2006. Invasive shrub distribution varies with distance to roads and stand age in eastern deciduous forests in Indiana, USA. Plant ecology 184:131-141. Springer.
Forest Health Staff. 2005. Border Privet Ligustrum obtusifolium Sieb. \& Zucc. Accessed online: http://www.na.fs.fed.us/fhp/invasive_plants/weeds/border_privet.pdf.
Francis, H. R. 1919. Trees in roadside treatment. Syracuse Univeristy, New York, New York, USA.

Franklin-Tong, V. E. 2008. Self-Incompatibility in flowering plants: evolution, diversity, and mechanisms. Springer Science \& Business Media.
GBIF. 2015. Global Biodiversity Information Facility Data Portal. GBIF Secretariat. Accessed online: http://www.gbif.org/.
Gleditsch, J. M., and T. A. Carlo. 2011. Fruit quantity of invasive shrubs predicts the abundance of common native avian frugivores in central Pennsylvania. Diversity and Distributions 17:244-253. Blackwell Publishing Ltd.
Green, P. S. 1995. Taxonomic Notes relating to Ligustrum (Oleaceae). Kew Bulletin 50:379-386. Springer on behalf of Royal Botanic Gardens, Kew
Grove, E., and B. D. Clarkson. 2005. An ecological study of Chinese privet (Ligustrum sinense Lour.) in the Waikato Region. Hamilton, New Zealand.
Hanula, J. L., S. Horn, and J. W. Taylor. 2009. Chinese privet (Ligustrum sinense) Removal and its effect on native plant communities of riparian forests. Invasive Plant Science and Management 2:292-300. Weed Science Society of America.
Hara, H. 1944. Ligustrum obtusifolium. Journal of Japanese Botany (J. Jap. Bot.) 20:329.
Harrington, T. B., and J. H. MIller. 2005. Effects of application rate, timing, and formulation of glyphosate and triclopyr on control of Chinese privet (Ligustrum sinense). Weed Technology 19:47-54. Weed Science Society of America.
Hatch, L. C. 2015. Cultivars of woody plants:: Lavandula, Lantana, Laurus, and other genera. TCR Press.
Heap, I. 2012. The international survey of herbicide resistant weeds. Accessed online: http://www.weedscience.org/summary/home.aspx.
Hedges. 1918, May 11. . Fort Wayne News and Sentinel:9. Fort Wayne, Indiana, USA.
Heide-Jørgensen, H. S. 2008. Parasitic flowering plants. Brill.
Henry, R. D., and A. R. Scott. 1981. Time of introduction of the alien component of the spontaneous Illinois vascular flora. American Midland Naturalist 106:318-324. The University of Notre Dame.
Herron, P. M., C. T. Martine, A. M. Latimer, and S. A. Leicht-Young. 2007. Invasive plants and their ecological strategies: prediction and explanation of woody plant invasion in New England. Diversity and Distributions 13:633-644. Blackwell Publishing Ltd.
Hilty, J. (Ed.). 2012. Illinois wildflowers. Accessed online: http://www.illinoiswildflowers.info/.
HOSTS. 2014. No Title. Accessed online: http://www.nhm.ac.uk/index.html.
Hubick, B., and J. Brighton (Eds.). 2014. Maryland Biodiversity Project (MBP). Retrieved January 1, 2014, from http://www.marylandbiodiversity.com/index.php.
Hunter, J. C., and J. A. Mattice. 2002. The spread of woody exotics into the forests of a northeastern landscape, 1938-1999. Journal of the Torrey

Botanical Society 129:220-227. Torrey Botanical Society. doi: 10.2307/3088772.

Invasive Plants of Rhode Island. 2014. . Accessed online: http://www.urimastergardeners.org/2014-soil-testing.
ITIS. 2012. On-line Taxonomic Database. Accessed online: http://www.itis.gov/.
Jog, S. K., J. T. Kartesz, J. R. Johansen, and G. J. Wilder. 2005. Floristic study of highland heights community park, Cuyahoga County, Ohio. Castanea 70:136-145. Southern Appalachian Botanical Society.
Kelcey, J. G., and N. Müller. 2011. Plants and habitats of European cities. Springer.
Kerr, L. A., and W. J. Kelch. 1999. Fatal privet (Ligustrum amurease) toxicosis in Tennessee cows. Vet Hum Toxicol. 41:391-392.
King, G. J., C. P. Lindsey, and M. E. Zampardo. 2014. Ligustrum obtusifolium var. regelianum. Accessed online: http://woodyplants.nres.uiuc.edu/plant/ligobre.
King, G. L. 2015. Image: Ligustrum obtusifolium Border privet - Copyright @ 2015. UI Plants. Urbana-Champagne.
Kitagawa, M. 1934. Ligustrum ibota var. suave. Botanical Magazine 48:612614, f. 18.
Kitagawa, M. 1965. Ligustrum obtusifolium subsp. suave. Journal of Japanese Botany 40:134-135.
Kitagawa, M. 1979. Ligustrum suave. Neo-Lineamenta Florae Manshuricae 510.

Koehne, B. A. E. 1896. Ligustrum obtusifolium var. dubium. Herb. Dendr.no. 191.

Koehne, B. A. E. 1904. Ligustrum regelianum. (Urb. \& Graebn., Ed.) Festschr. Aschers.
Koidzumi, G. 1916. Ligustrum ibota var. diabolicum. Botanical Magazine (Bot. Mag. Tokyo) 30:82.
Koidzumi, G. 1926. Ligustrum ibota var. obtusifolium. Botanical Magazine (Bot. Mag. Tokyo) 40:342.
Kollmann, J., and S. A. Reiner. 1996. Light demands of shrub seedlings and their establishment within scrublands. Flora (Jena) 191:191-200.
Konno, K., C. Hirayama, H. Shinbo, and M. Nakamura. 2009. Glycine addition improves feeding performance of non-specialist herbivores on the privet, Ligustrum obtusifolium: In vivo evidence for the physiological impacts of anti-nutritive plant defense with iridoid and insect adaptation with glycine. Applied Entomology and Zoology 44:595-601.
Lavergne, C., J.-C. Rameau, and J. Figier. 1999. The invasive woody weed Ligustrum robustum subsp. walkeri threatens native forests on La Réunion. Biological Invasions 1:377-392. Kluwer Academic Publishers..
Lochmiller, R. L. 1978. Privet as a potential winter food supplement for songbirds. Bird-Banding 49:279-280 CR - Copyright \&\#169; 1978 Association of. Wiley on behalf of Association of Field Ornithologists.

Mabberley, D. J. 2008. Mabberley's plant-book: A portable dictionary of plants, their Classifications, and Uses. Cambridge University Press.
Maddox, V., J. Byrd, and B. Serviss. 2010. Identification and control of invasive privets (Ligustrum spp.) in the middle southern United States. Invasive Plant Science and Management 3:482-488. Weed Science Society of America.
Mansfeld, R. 1924a. Ligustrum ibota var. amurense. Beibl. Bot. Jahrb. Syst. 132:65.
Mansfeld, R. 1924b. Ligustrum ibota var. amurense (Carrière). Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie. 132:32.
Martin, P. G., and J. M. Dowd. 1990. A protein sequence study of the dicotyledons and its relevance to the evolution of the legumes and nitrogen fixation. Australian Systematic Botany 3:91-100.
Martine, C. T., S. Leicht-Young, P. Herron, and A. Latimer. 2008. Fifteen woody species with potential for invasiveness in New England. Rhodora 110:345-353. The New England Botanical Club, Inc.
Maybury, K. 2014. Ligustrum obtusifolium (Sieb. \& Zucc.) - border privet. Accessed online: http://explorer.natureserve.org/servlet/NatureServe?searchName=Ligustr um+obtusifolium.
Merriam, R., and E. Feil. 2002. The Potential Impact of an introduced shrub on native plant diversity and forest regeneration. Biological Invasions 4:369-373. Kluwer Academic Publishers.
Miller, J. H., E. B. Chambliss, and N. J. Loewenstein. 2010. A field guide for the identification of invasive plants in southern forests. Asheville, NC.
Missouri Botanical Gardens. 2013. Plant Finder. Accessed online: http://www.missouribotanicalgarden.org/.
Moorman, C. (Ed.). 2014. Japanese privet, Chinese privet, and Common privet. Accessed online: http://www.ncsu.edu/goingnative/howto/mapping/invexse/privets.html.
Munger, G. T. 2003. Ligustrum spp. Accessed online: http://www.fs.fed.us/database/feis/plants/shrub/ligspp/all.html.
Murata, G. 1962. Ligustrum obtusifolium f. leiocalyx. Acta Phytotaxonomica et Geobotanica (Acta Phytotax. Geobot.) 19:71.
Nakai, T. (Takenosin). 1911. Ligustrum ibota var. tschonoskii. Flora Koreana. Tokyo (Fl. Ko.) 2:89.
Nakai, T. (Takenosin). 1914. Ligustrum ibota var. microphyllum. Fl. Quelpart Is. 73.
Nakai, T. (Takenosin). 1918a. Ligustrum ibota f. angustifolium. Botanical Magazine (Bot. Mag. Tokyo) 32:123.
Nakai, T. (Takenosin). 1918b. Ligustrum ibota f. tschonoskii. Botanical Magazine (Bot. Mag. Tokyo) 32:1245.
Nakai, T. (Takenosin). 1922. Trees and shrubs indigenous in Japan proper, 1st edition. Seibido Shoten, Nihombashi, Tokyo, Japan.
Nakai, T. (Takenosin). 1931. Ligustrum obtusifolium var. rubescens.

Botanical Magazine (Bot. Mag. Tokyo) 45:130.
Nesom, G. L. 2009. Taxonomic overview of Ligustrum (Oleaceae) naturalized in North America North of Mexico. Phytologia 91:467-482.
NGRP. 2014. Germplasm Resources Information Network (GRIN). Online Database. National Germplasm Resources Laboratory, Beltsville, USA. Accessed online: http://www.ars-grin.gov/cgibin/npgs/html/taxon.pl?316751.
NH Department of Agriculture (Ed.). 2014. Blunt-Leaved / Boarder Privet Ligustrum obtusifolium. Accessed online:
http://www.agriculture.nh.gov/publications-forms/documents/privet.pdf.
Nickrent, D. 2014. Parasitic plant classification. Accessed online: http://www.parasiticplants.siu.edu/.
Norton Brown Herbarium. 2015. University of Maryland College of Agriculture and Natural Resources. Accessed online April 11, 2015. http://www.nbh.psla.umd.edu/.
Oosterhout, E. van, J. Mowatt, L. Smith, and S. Johnson. 2010. Privet -broad-leaf, small-leaf and European. Accessed online: http://www.dpi.nsw.gov.au/agriculture/pestsweeds/weeds/profiles/privet.
Orleans Conservation Trust (Ed.). 2014. Border privet (Ligustrum obtusifolium). Accessed online: http://orleansconservationtrust.org/.
OSU Pocket Gardener. 2015. Ligustrum obtusifolium. The Ohio State University. Accessed online: http://hvp.osu.edu/pocketgardener/source/description/li_olium.html.
PFAF (Ed.). 2014. Ligustrum obtusifolium - Siebold.\& Zucc. Accessed online:
http://www.pfaf.org/user/Plant.aspx?LatinName=Ligustrum+obtusifoliu m.

Plant Conservation Alliance's Alien Plant Working Group (Ed.). 2014. No Title. Accessed online: http://www.nps.gov/plants/alien/index.htm.
Prada, M. A., and D. Arizpe. 2008. Riparian tree and shrub propagation handbook - an aid to riverine restoration in the Mediterranean region. (M. A. Prada and D. Arizpe, Eds.).

Reay, W. G., and K. A. Moore. 2009. Introduction to the Chesapeake Bay National Estuarine Research Reserve in Virginia. Journal of Coastal Research:1-9. Coastal Education and Research Foundation.
Regal Privet, Border privet Ligustrum obtusifolium. 2013. . Locke, New York, USA.
Rehder, A. 1899. Ligustrum obtusifolium var. regelianum. Möller's Deutsche Gärtner-Zeitung 14:218.
Rehder, A. 1900. Ligustrum ibota var. regelianum. Page 912 in L. H. Bailey, editor. Cyclopedia of American Horticulture:
Rhoads, A. F., and T. A. Block. 2011. Obtuse-leaved privet, Border privet Ligustrum obtusifolium Siebold \& Zucc. Accessed online: http://www.paflora.org/pdf/INV-Fact Sheets/Ligustrum obtusifolium.pdf.

Sargent, C. S. (Ed.). 1893. Garden and Forest. Garden and Forest Publishing Company.
Saunders, W. 1904. Trees and shrubes tested in Manitoba and the North-West Territories. Page 117 Bulletins. A. Angers, Minister of Agriculture, Ottowa, Canada.
Saunders, W., and W. T. Macoun. 1899. Catalogue of the trees and shrubs in the arboretum and botanic garden at the Central Experimental Farm, Ottawa. Ontario, Canada. Government Print. Bureau.
ScaleNet. 2014. . Accessed online: http://www.sel.barc.usda.gov/SCALENET/SCALENET.HTM.
Shelton, M. G., and M. D. Cain. 2002. Potential carry-over of seeds from 11 common shrub and vine competitors of loblolly and shortleaf pines. Can. J. For. Res. 32:412-419.

Siebold, P. F. (Balthasar) von. 1903. Ligustrum ibota var. regelianum. Page 418 in E. S. H. Z. L. Beissner, editor. Handbuch der Laubholzbenennung. Berlin, Germany.
Siebold, P. F. (Balthasar) von, and J. G. Zuccarini. 1846. Ligustrum obtusifolium. Abhandlungen der Mathematisch-Physikalischen Classe der Königlich Bayerischen Akademie der Wissenschaften (Abh. Math.Phys. Cl. Königl. Bayer. Akad. Wiss.) 4:168.
Stevens, P. F. 2012. Angiosperm Phylogeny Website, version 13. Accessed online: http://www.mobot.org/MOBOT/research/APweb/.
Sukopp, H. 2006. Botanische Gärten und die Berliner Flora. Willdenowia 36:115-125. Botanischer Garten und Botanisches Museum, BerlinDahlem.
Swearingen, J., B. Slattery, K. Reshetiloff, and S. Zwicker. 2010a. Plant Invaders of Mid-Atlantic Natural Areas, 4th edition. Washington, District of Columbia.
Swearingen, J., B. Slattery;, K. Reshetiloff;, and S. Zwicker. 2010b. Plant Invaders of Mid-Atlantic Natural Areas, 4th edition. National Park Service and U.S. Fish and Wildlife Service, Washington, D. C.
The Plant List. 2010. The Plant List. Version 1. Accessed online: http://www.theplantlist.org/.
Thompson, O. 1971. Image: Ligustrum obtusifolium Sieb. \& Zucc Accession \#18552. College Park. Accessed online: http://www.nbh.psla.umd.edu/detail.php?ID=000018552.
Thompson, R. L., and S. R. Green. 2010. Vascular plants of an abandoned limestone quarry in garrard County, Kentucky. Castanea 75:245-258. Southern Appalachian Botanical Society TVA Heritage Program, PO Box 1589, Norris, Tennessee 37828.
Tropicos Database. 2015. Missouri Botanical Garden: Tropicos database. Missouri Botanical Garden. Accessed online: http://www.tropicos.org/.
Uechi, N., and J. Yukawa. 2006. Host range and life History of Asphondylia sphaera (Diptera: Cecidomyiidae): Use of short-term alternate hosts. Annals of the Entomological Society of America 99:1165-1171. Entomological Society of America.

United States Bureau of Plant Industry. 1919. Inventory of seeds and plants imported. (D. Fairchild, Ed.). U.S. Government Printing Office, Washington, D.C.
United States. Agricultural Research Service. 1917. Plant Inventory.
USDA ARS. 2015. NC7 Woody Ornamental Trials. North Central Regional Plant Introduction Station, Ames, Iowa, USA. Accessed online: http://www.arsgrin.gov/ars/MidWest/Ames/repository/oldsitearchive/Ornamental_Trial s/1999/1999pl~1.htm.
USDA NRCS. 2014. The PLANTS Database. Greensboro, NC 27401-4901 USA. Accessed online: http://plants.usda.gov.
Wagstaff, D. J. 2008. International Poisonous Plants Checklist: An EvidenceBased Reference. Taylor \& Francis.
Wallender, E. 2014. Taxonomy and Systematics of the Plant Family Oleaceae. Accessed online: http://www.oleaceae.info/index.html.
WCPS. 2014. World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Retrieved January 1, 2014, from http://apps.kew.org/wcsp/.
Weldy, T., D. Werier, and A. Nelson. 2014. New York Flora Atlas.
Wieboldt, T. (Ed.). 2014. Digital Atlas of the Virginia Flora. Accessed online: http://vaplantatlas.org/news/about/about-digital-atlas/.
Williams, P. A., B. J. Karl, P. Bannister, and W. G. Lee. 2000. Small mammals as potential seed dispersers in New Zealand. Austral Ecology 25:523-532. Blackwell Science Pty.
Wyman, D. 1938. Hedges, Screens \& windbreaks: their uses, selection and care. McGraw-Hill.
Wynne, J. W., A. J. Keaster, K. O. Gerhardt, and G. F. Krause. 1991. Plant species identified as food sources for adult Black cutworm (Lepidoptera: Noctuidae) in Northwestern Missouri. Journal of the Kansas Entomological Society 64:381-387. Allen Press on behalf of Kansas (Central States) Entomological Society.
Yatskievych, G., and J. A. Raveill. 2001. Notes on the increasing proportion of non-native angiosperms in the Missouri flora, with reports of three new genera for the state. SIDA, Contributions to Botany:701-709. JSTOR.
Zinovjev, A. 2015. Image: Ligustrum obtusifolium Sieb. \& Zucc. Border privet - Copyright @ 2015. Retrieved May 20, 2003, from https://gobotany.newenglandwild.org/species/ligustrum/obtusifolium/.

Appendix A. Weed risk assessment for Ligustrum obtusifolium Siebold and Zucc.(1846) (Oleaceae). The following information came from the original risk assessment, which is available upon request (full responses and all guidance). The information has been modified to fit on the page.

Question ID	Answer - Uncertainty	Score	Notes (and references)
ESTABLISHMENT/SPREAD			
POTENTIAL			

ES-1 (Status/invasiveness outside its native range)	f-negl	5	USDA NRCS (2014) reports that Ligustrum obtusifolium is found in 21 states. It is recorded in the USDA plant inventories in 1917, and found in Illinois after 1922 (United States. Agricultural Research Service 1917; Henry and Scott 1981). L. obtusifolium may have been introduced as early as 1860 into the United States (Maddox, Byrd, and Serviss 2010). L. obtusifolioum has "demonstrated an invasive tendency in Connecticut, meaning it may escape from cultivation and naturalize in minimally managed areas (Brand 2001); is found to be invasive in Rhode Island (Invasive Plants of Rhode Island 2014). After its arrival in the United States in the 19th century, L. obtusifolium "quickly spread due to its use as hedging on private properties but it has made its way into the wild" in Massachusetts (Forest Health Staff 2005). The plant appears on the invasive watch list in Ohio as a "cultivated escape" (Jog et al. 2005). L. obtusifolium is established in North American stream valleys, old fields, forest gaps, and disturbed urban and suburban forest remnants (Yatskievych and Raveill 2001; Flory and Clay 2006; Herron et al. 2007; Martine et al. 2008; Reay and Moore 2009; Thompson and Green 2010; Boyce 2010; Maddox et al. 2010; Rhoads and Block 2011; Shannon, Flory, and Reynolds 2012). Early signs of potential establishment outside of garden settings were observed by Sargent (1893) who hoped that "Japanese Berberis Thunbergii and Ligustrum Ibota" would become as completely naturalized in some parts of the United States as Ligustrum vulgare and Berberis vulgaris had become naturalized in eastern New England noting that "when they [were] planted in semi wild situations numerous seedlings spring up and [were] able to hold their own against the encroachments of native plants (Sargent 1893). Alfred Rehder, Arnold Arboretum, wrote that "Ligustrum Amurense [syn. obtusifolium] was introduced according to Carrière in 1860 into the Jardin des Plantes in Paris from the Botanic Garden at St Petersburg, and [was reportedly] a native of Amurland" (Faxon 1903). Alternate choices for the Monte Carlo simulation were both "e."

| ES-2 (Is the species n-negl $\mathbf{0}$
 L. obtusifolim has been cultivated for ornamental use in the
 highly
 horticulture trade since the late 19th century in North America
 (Somesticated)
 (Sargent 1893; Saunders and Macoun 1899; Rehder 1900;
 Faxon 1903; Saunders 1904); however, we found no evidence |
| :--- | :--- | :--- | :--- |

Question ID	Answer - Uncertainty	Score	Notes (and references)
			of breeding or selection for traits associated with reduced weed potential
ES-3 (Weedy	y - negl	$\mathbf{1}$	ITIS lists 12 species in the genus Ligustrum. USDA GRIN (NGRP 2012) lists 41 species in the genus. Wallender (2014)
congeners)			

Question ID	Answer Uncertainty	Score	Notes (and references)
ES-13 (Minimum generation time)	c-high	0	Three years to maturity was cited in Hilty (2012). Because we found no other evidence, we answered " c " with high uncertainty The alternate answers for the Monte Carlo simulation were both "d" as it seems unlikely this species will produce the next generation within 2-3 years.
ES-14 (Prolific reproduction)	? - max	-1	Unknown for L. obtusifolium.
ES-15 (Propagules likely to be dispersed unintentionally by people)	? - max	0	Unknown.
ES-16 (Propagules likely to disperse in trade as contaminants or hitchhikers)	? - max	0	We found no evidence.
ES-17 (Number of natural dispersal vectors)	1	-2	Fruit and seed descriptions used to answer ES-17a through e: Drupes of L. obtusifolium are subglobose to broadly ellipsoid, 5-8 mm; seeds 1 (Nesom 2009); fruit purple-black, subglobose to broadly ellipsoid, 5-8 x 4-6 mm. (eFloras.org 2006a); fruit is a small black to blue-black oval to spherical drupe (i.e., a fleshy fruit with 1 -several stony seeds inside) (Swearingen et al. 2010).
$\begin{aligned} & \text { ES-17a (Wind } \\ & \text { dispersal) } \end{aligned}$	n-negl		We found no evidence that fruit are or are not wind dispersed, however fruit seem too large for wind dispersal (Herron et al. 2007; Lenoir and Herron 2009).
$\begin{aligned} & \text { ES-17b (Water } \\ & \text { dispersal) } \end{aligned}$	n-mod		We found no direct evidence.
$\begin{aligned} & \text { ES-17c (Bird } \\ & \text { dispersal) } \end{aligned}$	y - negl		Seed dispersal is mainly from frugivorous birds (Gleditsch and Carlo 2011; NH Department of Agriculture 2014).Bird dispersal (Lochmiller 1978; Munger 2003).
$\begin{gathered} \text { ES-17d (Animal } \\ \text { external dispersal) } \end{gathered}$	n - low		There is no evidence, research or documentation that fruit are adapted for external dispersal on animals. Based on the morphology of fruit, this dispersal mechanism seems unlikely.
ES-17e (Animal internal dispersal)	n-mod		No direct evidence for this vector for L. obtusifolium specifically; some evidence that ingested seed would not survive ingestion for other Ligustrum spp. (Williams et al. 2000).
ES-18 (Evidence that a persistent (>1yr) propagule bank (seed bank) is formed)	n-mod	-1	No persistent seed bank for Ligustrum spp. (Shelton and Cain 2002; Munger 2003).
ES-19 (Tolerates/benefits from mutilation, cultivation or fire)	y - low	1	L. obtusifolium resprouts necessitating repeated control procedures (Rhoads and Block 2011); likely to benefit from fire disturbance but no documentation (Munger 2003). Because the plant is easily propagated clonally, we might surmise that it benefits from disturbance.
ES-20 (Is resistant	n - negl	0	No evidence of resistance in Ligustrum spp. (Heap 2012); no

Question ID	Answer Uncertainty	Score	Notes (and references)
to some herbicides or has the potential to become resistant)			evidence of herbicide resistance in L. obtusifolium (Batcher 2000; Harrington and Miller 2005; Boyce 2010; Maddox et al. 2010).
ES-21 (Number of cold hardiness zones suitable for its survival)	9	0	
ES-22 (Number of climate types suitable for its survival)	5	2	
ES-23 (Number of precipitation bands suitable for its survival)	10	1	
$\begin{aligned} & \hline \text { IMPACT } \\ & \text { POTENTIAL } \end{aligned}$			
General Impacts			
Imp-G1 (Allelopathic)	n-high	0	We found no evidence of allelopathy in L. obtusifolium. There is one study on L. sinense which suggests some allelopathic potential (Grove and Clarkson 2005).
Imp-G2 (Parasitic)	n-negl	0	We found no evidence that L. obtusifolium is parasitic. It is in the Oleaceae family (NGRP 2012) which is not known to contain parasitic plants (Heide-Jørgensen 2008; Nickrent 2014).
Impacts to Natural Systems			
Imp-N1 (Change ecosystem processes and parameters that affect other species)	n-mod	0	"No evidence of significant impacts on abiotic processes" (Maybury 2014).
Imp-N2 (Change community structure)	n-high	0	We did not find any direct evidence that it changes habitat structure. However, because it does form dense thickets (see ES-6), we suspect it may be able to. Consequently, we answered "no" but with high uncertainty.
Imp-N3 (Change community composition)	y - low	0.2	According to Maybury (2014), L. obtusifolium "generally invades lower quality disturbed habitats but it can form dense thickets and could have impacts on native biodiversity in a number of locales." L. obtusifolium negatively impacts plant communities according to Flory and Clay $(2009,2006)$ citing Merriam and Feil (2002), however, Merriam and Feil discuss L.sinense not obtusifolium in the 2002 paper. Maybury (2014) notes that L. obtusifolium thickets "can crowd out native species" citing IPANE, with no date given.
Imp-N4 (Is it likely to affect federal Threatened and	y - negl	0.1	Because this species invades natural systems in the United States, it has the potential to impact Tand E species. Erdle and Heffernan (2005) specifically list L. obtusifolium as a threat to

Question ID	Answer - Uncertainty	Score

Question ID	Answer - Uncertainty	Score	Notes (and references)
		weed of productions systems. Because it has been has been under cultivation for at least 150 years (Maddox, Byrd, and Serviss 2010), is relatively well known, and is a woody shrub that is unlikely to establish in most production systems, we answered "no" with low uncertainty for most questions in this section.	
Imp-P2 (Lowers commodity value)	n - mod	0	We found no evidence. Mabberley (2008) reports that the trimethylamines in Ligustrum spp. flowers taint honey of bees that feed on it.
Imp-P3 (Is it likely	n - low	0	We found no evidence.

Question ID	Answer Uncertainty	Score	Notes (and references)
			(GBIF 2015); Korea (GBIF 2015 occ.)
Geo-Z8 (Zone 8)	y - negl	N/A	Seattle, WA; Chico Creek, CA, MA, China; Japan (GBIF 2015); Korea (GBIF 2015 occ.)
Geo-Z9 (Zone 9)	y - negl	N/A	Taibaishan, China; Yamakami, Sugimori, Japan (GBIF 2015); Plummers Island, trail along Potomac River, MD, CA, China, Japan (GBIF 2015); Korea (GBIF 2015 occ.)
Geo-Z10 (Zone 10)	y - negl	N/A	Hamao, Hamao Retarding Basin., Japan (GBIF 2015)
Geo-Z11 (Zone 11)	$y-n e g l$	N/A	Ogasawara-mura, Japan (GBIF 2015)
Geo-Z12 (Zone 12)	n - negl	N/A	We found no evidence of Ligustrum occurring in this zone.
Geo-Z13 (Zone 13)	n - negl	N/A	We found no evidence of Ligustrum occurring in this zone.
Köppen -Geiger climate classes			
Geo-C1 (Tropical rainforest)	n - negl	N/A	We found no evidence of Ligustrum occurring in this climate class.
Geo-C2 (Tropical savanna)	n - negl	N/A	We found no evidence of Ligustrum occurring in this climate class.
Geo-C3 (Steppe)	n - negl	N/A	We found no evidence of Ligustrum occurring in this climate class.
Geo-C4 (Desert)	n - negl	N/A	We found no evidence of Ligustrum occurring in this climate class.
$\begin{aligned} & \text { Geo-C5 } \\ & \text { (Mediterranean) } \end{aligned}$	y - low	N/A	USA: CA, MA, WA (GBIF 2015.) We used low uncertainly rather than neglible because the Washington state location is in a park and could be deliberately planted.
Geo-C6 (Humid subtropical)	y - negl	N/A	Ogasawara-mura, Japan; USA: DC, KS, MD, MO, VA, China, Japan (GBIF 2015); Korea (GBIF 2015 occ.)
Geo-C7 (Marine west coast)	y - low	N/A	Germany (GBIF 2015)
Geo-C8 (Humid cont. warm sum.)	y - negl	N/A	USA: CT, IN, KS, MD, MO, NJ, NY, OH (GBIF 2015); China: Heilongjiang, Liaoning, Shandong (GBIF 2015 occ.)
Geo-C9 (Humid cont. cool sum.)	y - negl	N/A	USA: MA, MI (GBIF 2015) China: Heilongjiang (GBIF 2015 occ.); Japan (GBIF 2015); North Korea (GBIF 2015 occ.)
Geo-C10 (Subarctic)	n - negl	N/A	We found no evidence of Ligustrum occurring in this climate class.
Geo-C11 (Tundra)	n - negl	N/A	We found no evidence of Ligustrum occurring in this climate class.
Geo-C12 (Icecap)	n - negl	N/A	We found no evidence of Ligustrum occurring in this climate class.
10-inch precipitation bands			
Geo-R1 (0-10 inches; $0-25 \mathrm{~cm}$)	n - negl	N/A	We found no evidence of Ligustrum occurring in this precipitation band.
Geo-R2 (10-20 inches; $25-51 \mathrm{~cm}$)	y - low	N/A	Japan (Himao, Tsushima-shi); China: Heilongjiang, Liaoning, Shandong (GBIF 2015 occ.)
Geo-R3 (20-30 inches; 51-76 cm)	y - negl	N/A	USA: CA; Germany (GBIF 2015); China: Jiangsu (pt), Shandong (occ.) (GBIF 2015); Korea (GBIF 2015 occ.)
Geo-R4 (30-40 inches; 76-102 cm)	y - negl	N/A	USA: KS, MO, WA; China; Japan (GBIF 2015)

Question ID	Answer Uncertainty	Score	Notes (and references)
$\begin{aligned} & \text { Geo-R5 (40-50 } \\ & \text { inches; 102-127 } \\ & \mathrm{cm}) \\ & \hline \end{aligned}$	y - negl	N/A	(Erdle and Heffernan 2005); USA: DC, IL, MD, MI, MO, OH, VA; China; Japan (GBIF 2015) Korea (GBIF 2015 occ.)
$\begin{aligned} & \hline \text { Geo-R6 (50-60 } \\ & \text { inches; 127-152 } \\ & \text { cm) } \end{aligned}$	y - negl	N/A	USA: CT, MA, NJ; China; Japan (GBIF 2015); Korea GBIF 2015 occ.)
$\begin{aligned} & \hline \text { Geo-R7 (60-70 } \\ & \text { inches; 152-178 } \\ & \mathrm{cm}) \\ & \hline \end{aligned}$	y - negl	N/A	China; Japan (GBIF 2015); Korea (GBIF 2015 occ.)
$\begin{aligned} & \text { Geo-R8 (70-80 } \\ & \text { inches; 178-203 } \\ & \mathrm{cm}) \end{aligned}$	y - negl	N/A	China; Japan (GBIF 2015)
Geo-R9 (80-90 inches; 203-229 cm)	y - negl	N/A	China; Japan (GBIF 2015)
$\begin{aligned} & \text { Geo-R10 (90-100 } \\ & \text { inches; 229-254 } \\ & \text { cm) } \end{aligned}$	y - negl	N/A	China; Japan (GBIF 2015)
Geo-R11 (100+ inches; 254+cm)	y - negl	N/A	China; Japan (GBIF 2015)
$\begin{aligned} & \hline \text { ENTRY } \\ & \text { POTENTIAL } \end{aligned}$			
Ent-1 (Plant already here)	y - negl	1	Ligustrum is present in the United States (USDA NRCS 2014).
Ent-2 (Plant proposed for entry, or entry is imminent)	-	N/A	
Ent-3 (Human value and cultivation/trade status)	-	N/A	
Ent-4 (Entry as a contaminant)			
Ent-4a (Plant present in Canada, Mexico, Central America, the Caribbean or China)	-	N/A	
Ent-4b (Contaminant of plant propagative material (except seeds))	-	N/A	
Ent-4c (Contaminant of seeds for planting)	-	N/A	

Question ID	Answer Uncertainty	Score	Notes (and references)
Ent-4d (Contaminant of ballast water)		N/A	
Ent-4e (Contaminant of aquarium plants or other aquarium products)	-	N/A	
Ent-4f (Contaminant of landscape products)	-	N/A	
Ent-4g (Contaminant of containers, packing materials, trade goods, equipment or conveyances)	-	N/A	
Ent-4h (Contaminants of fruit, vegetables, or other products for consumption or processing)	-	N/A	
Ent-4i (Contaminant of some other pathway)	-	N/A	
Ent-5 (Likely to enter through natural dispersal)	-	N/A	

Appendix B. Maryland filter assessment for Ligustrum Siebold and Zucc.(1846) (Oleaceae).

Maryland Filter questions	Answer	Notes
1. Is the plant a sterile cultivar or used only for root stock? yes OR no	no	Mature privet, Ligustrum spp., can produce hundreds of fruits per plant per year (Munger 2003).
		Occurs in Harford County to Prince George's and Montgomery (EDDMapS 2015), but has the potential to occur in any physiographic province in Maryland according to the WRA geographic analysis.
2. What is the species potential distribution in Maryland? wide OR narrow	wide	
3. Could the species harm threatened or endangered Maryland species or community types or CITES listed species occurring in MD? yes OR no	unknown	
4. How feasible is control of the species? easy OR difficult	difficult	Plants reproduce vegetatively from root sprouts (Rhoads and Block 2011).
5. Is added propagule pressure from sales significantly increasing potential of the species to persist and spread? yes OR no	Tier 2	Ligustrum obtusifolium has been present in Maryland since at least 1928 (Norton Brown Herbarium 2015).

Appendix C. Detailed list of synonyms (The Plant List 2010; NGRP 2014):

Ligustrum amurense Carrière

Synonym of: Ligustrum subsp. suave (Kitag.) Kitag.
Ligustrum ciliatum Siebold ex Blume
Synonym of: Ligustrum ibota Siebold
Ligustrum ibota Siebold
Synonyms:
Ligustrum ciliatum Siebold ex Blume
Ligustrum ibota f. microphyllum Nakai
Synonym of: Ligustrum subsp. microphyllum (Nakai) P. S. Green
Ligustrum ibota var. regelianum Rehder
Synonym of: Ligustrum subsp. obtusifolium
Ligustrum Siebold and Zucc.
Synonym:
Ligustrum regelianum Koehne
Ligustrum subsp. microphyllum (Nakai) P. S. Green
Ligustrum ibota f. microphyllum Nakai
Ligustrum subsp. obtusifolium

Synonyms:
Ligustrum ibota var. regelianum Rehder Ligustrum var. regelianum Rehder
Ligustrum var. regelianum Rehder
Synonym of: Ligustrum subsp. obtusifolium
Ligustrum subsp. suave (Kitag.) Kitag.
Synonym:
Ligustrum amurense Carrière
Ligustrum regelianum Koehne
Synonym of: Ligustrum Siebold and Zucc.

[^0]: 1 "WRA area" is the area in relation to which the weed risk assessment is conducted [definition modified from that for "PRA area"] (IPPC 2012).

